Department of Mathematics and Statistics

MTH 203 Sample Exam II, 2009-2012

1. [10pts] Find a value of c such that the function

$$
f(x, y)=\frac{x^{3}}{3}+\frac{c y^{2}}{2}+x y
$$

has a local maximum somewhere. Justify your answer using the second derivative test.
2. [10pts] Consider a metal plate which is a disk of radius $\sqrt{2}$ centered at $(4,0)$ in the $x y$-plane. Note that the equation of the corresponding circle is $(x-4)^{2}+y^{2}=2$. The temperature of the disk is given by $T(x, y)=\ln (x+y)$.
Find the minimum and maximum temperature on the disk.
3. [10pts] Compute the following integral by reversing the order of integration.

$$
\int_{0}^{2} \int_{x^{2}}^{4} \frac{1}{1+y^{3 / 2}} d y d x
$$

4. [10pts] Write a double integral in polar coordinates that equals the surface area of the portion of $x^{2}+y^{2}+z^{2}=9$ that lies between $z=1$ and $z=2$. You do NOT have to evaluate the integral.
5. [10pts]Write an integral in spherical coordinates for the mass of the region that lies below $x^{2}+y^{2}+z^{2}=4$ and above $z=1$ and has density $\rho(x, y, z)=z$. (Note that ρ is used for denisty and radius). You do NOT have to evaluate the integral.
6. [10pts] Write a triple integral that represent the volume of the region that lies above $z=\sqrt{x^{2}+y^{2}}$, below $z=2+\sqrt{x^{2}+y^{2}}$ and inside $z=x^{2}+y^{2}$. You do NOT have to evaluate the integral.
7. Use Lagrange multipliers to find the points on the circle $(x-3)^{2}+$ $(y-4)^{2}=1$ that are closest and farthest from the origin.
8. For the iterated integral

$$
\int_{0}^{2} \int_{\sqrt{y / 2}}^{1} y e^{x^{5}} d x d y
$$

Graph the region of integration, change the order and compute (be careful.)
3. Find the mass of the lamina in the first quadrant bounded by the circle $x^{2}+y^{2}=2$ and the line $y=x$ given that the density function $\rho(x, y)=\frac{x}{y}$. Sketch the lamina. [Hint: Use polar coordinates.]
4. Write the integral in cylindrical coodinates (do not evaluate).

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{0}^{x}\left(x^{2}+y^{2}\right) d z d x d y
$$

5. Set up an iterated integral that evaluates the volume of the region in the first octant bounded by the surfaces $2 y^{2}+z^{2}=8$ and $x+y=2$. (do not evaluate).
6. Let E be the region in the first octant in space, inside the sphere $x^{2}+y^{2}+z^{2}=9$ and below the cone $3 z^{2}=x^{2}+y^{2}$.
(a) Convert the equation of the cone to spherical form.
(b) Find the volume of the solid.

Q1. (20%) Let $f(x, y)=x y^{2}+y^{2}-\frac{x^{2}}{2}-2 x+3$. Find all critical points of $f(x, y)$
and classify each critical point as a local minimum, local maximum or saddle point.

Q2. (16%) Find the max and min values of $f(x, y)=x^{2} y$ subject to the constraint $x^{2}+2 y^{2}=6$. b) What is the max and min on $x^{2}+2 y^{2} \leq 6$

Q3. (12%) Sketch the region and change the order of integration for $\int_{-2}^{1} \int_{2 y^{2}-1}^{3-2 y} f(x, y) d x d y$

Q4. (12\%) Consider the integral $\int_{0}^{1 / 2}$ int $_{x / \sqrt{3}}^{\sqrt{2 x-x^{2}}} \frac{1}{1+x^{2}+y^{2}} d y d x$
(a) Sketch the region of integration
(b) Change the above integral to polar coordinates. (Do not evaluate the integral).

Q5.(12\%) Set up a double integral to find the area of the surface S of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$.

Q6. (12\%) Set up a triple integral in rectangular coordinates that represents the volume of the solid enclosed by the cylinder $x^{2}+y^{2}=9$ and the planes $y+z=5$ and $z=1$. (Do not evaluate the integral)

Q7(3\%)a) An equation of a surface in spherical coordinates is given by $\rho=$ $\sin (\varphi)(2 \sin (\theta)-\cos (\theta))$. Express the equation in rectangular coordinates and describe the surface.
(10\%)b) Set up triple integral in spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ and below the sphere $x^{2}+y^{2}+z^{2}=4 z$.(Do not evaluate the integral).
(7%) c) If the the density at the point (x, y, z) is $\rho(x, y, z)=x+z$. Set up an triple integral in cylinderical coordinates which gives the mass of D.(Do not evaluate the integral).

